Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizer strain BoFeN1

نویسنده

  • D. K. NEWMAN
چکیده

Understanding the mechanisms of anaerobic microbial iron cycling is necessary for a full appreciation of presentday biogeochemical cycling of iron and carbon and for drawing conclusions about these cycles on the ancient Earth. Towards that end, we isolated and characterized an anaerobic nitrate-dependent Fe(II)-oxidizing bacterium from a freshwater sediment. The 16SrRNA gene sequence of the isolated bacterium (strain BoFeN1) places it within the β-Proteobacteria, with Acidovorax sp. strain G8B1 as the closest known relative. During mixotrophic growth with acetate plus Fe(II) and nitrate as electron acceptor, strain BoFeN1 forms Fe(III) mineral crusts around the cells. The amount of the organic cosubstrate acetate present seems to control the rate and extent of Fe(II) oxidation and the viability of the cells. The crystallinity of the mineral products is influenced by nucleation by Fe minerals that are already present in the inoculum. Received 25 July 2005; accepted 14 December 2005 Corresponding author: A. Kappler, Tel.: +49-7071-2974992; fax: +49-7071-295139; e-mail: [email protected].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1.

The mobility of toxic metals and the transformation of organic pollutants in the environment are influenced and in many cases even controlled by iron minerals. Therefore knowing the factors influencing iron mineral formation and transformation by Fe(II)-oxidizing and Fe(III)-reducing bacteria is crucial for understanding the fate of contaminants and for the development of remediation technologi...

متن کامل

Potential role of nitrite for abiotic Fe(II) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria.

Microorganisms have been observed to oxidize Fe(II) at neutral pH under anoxic and microoxic conditions. While most of the mixotrophic nitrate-reducing Fe(II)-oxidizing bacteria become encrusted with Fe(III)-rich minerals, photoautotrophic and microaerophilic Fe(II) oxidizers avoid cell encrustation. The Fe(II) oxidation mechanisms and the reasons for encrustation remain largely unresolved. Her...

متن کامل

Ecophysiologyand the energetic bene¢tofmixotrophic Fe(II) oxidation by various strainsof nitrate-reducing bacteria

In order to assess the importance of nitrate-dependent Fe(II) oxidation and its impact on the growth physiology of dominant Fe oxidizers, we counted these bacteria in freshwater lake sediments and studied their growth physiology. Most probable number counts of nitrate-reducing Fe(II)-oxidizing bacteria in the sediment of Lake Constance, a freshwater lake in Southern Germany, yielded about 10 ce...

متن کامل

Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria.

In order to assess the importance of nitrate-dependent Fe(II) oxidation and its impact on the growth physiology of dominant Fe oxidizers, we counted these bacteria in freshwater lake sediments and studied their growth physiology. Most probable number counts of nitrate-reducing Fe(II)-oxidizing bacteria in the sediment of Lake Constance, a freshwater lake in Southern Germany, yielded about 10(5)...

متن کامل

Fe biomineralization mirrors individual metabolic activity in a nitrate-dependent Fe(II)-oxidizer

Microbial biomineralization sometimes leads to periplasmic encrustation, which is predicted to enhance microorganism preservation in the fossil record. Mineral precipitation within the periplasm is, however, thought to induce death, as a result of permeability loss preventing nutrient and waste transit across the cell wall. This hypothesis had, however, never been investigated down to the singl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007